[−][src]Struct alloc_wg::boxed::Box
A pointer type for heap allocation.
See the module-level documentation for more.
Implementations
impl<T> Box<T>[src]
#[must_use]pub fn new(x: T) -> Self[src]
Allocates memory on the heap and then places x into it.
This doesn't actually allocate if T is zero-sized.
Example
use alloc_wg::boxed::Box; let five = Box::new(5);
#[must_use]pub fn new_uninit() -> Box<MaybeUninit<T>>ⓘ[src]
Constructs a new box with uninitialized contents.
Example
use alloc_wg::boxed::Box; let mut five = Box::<u32>::new_uninit(); let five = unsafe { // Deferred initialization: five.as_mut_ptr().write(5); five.assume_init() }; assert_eq!(*five, 5)
pub fn pin(x: T) -> Pin<Self>[src]
Constructs a new Pin<Box<T>>. If T does not implement Unpin, then
x will be pinned in memory and unable to be moved.
impl<T, A: AllocRef> Box<T, A>[src]
pub fn new_in(x: T, a: A) -> Self[src]
Allocates memory with the given allocator and then places x into it.
This doesn't actually allocate if T is zero-sized.
Example
#![feature(allocator_api)] use alloc_wg::{alloc::Global, boxed::Box}; let five = Box::new_in(5, Global);
pub fn try_new_in(x: T, alloc: A) -> Result<Self, AllocErr>[src]
Tries to allocate memory with the given allocator and then places x into it.
This doesn't actually allocate if T is zero-sized.
Example
#![feature(allocator_api)] use alloc_wg::{alloc::Global, boxed::Box}; let five = Box::try_new_in(5, Global)?;
pub fn new_uninit_in(a: A) -> Box<MaybeUninit<T>, A>ⓘ[src]
Constructs a new box with uninitialized contents in a specified allocator.
Example
#![feature(allocator_api)] use alloc_wg::{alloc::Global, boxed::Box}; let mut five = Box::<u32, _>::new_uninit_in(Global); let five = unsafe { // Deferred initialization: five.as_mut_ptr().write(5); five.assume_init() }; assert_eq!(*five, 5)
pub fn try_new_uninit_in(alloc: A) -> Result<Box<MaybeUninit<T>, A>, AllocErr>[src]
Tries to construct a new box with uninitialized contents in a specified allocator.
Example
#![feature(allocator_api)] use alloc_wg::{alloc::Global, boxed::Box}; let mut five = Box::<u32, Global>::try_new_uninit_in(Global)?; let five = unsafe { // Deferred initialization: five.as_mut_ptr().write(5); five.assume_init() }; assert_eq!(*five, 5);
pub fn pin_in(x: T, a: A) -> Pin<Self>[src]
Constructs a new Pin<Box<T, A>> with the specified allocator. If T does not implement
Unpin, then x will be pinned in memory and unable to be moved.
pub fn try_pin_in(x: T, a: A) -> Result<Pin<Self>, AllocErr>[src]
Constructs a new Pin<Box<T, A>> with the specified allocator. If T does not implement
Unpin, then x will be pinned in memory and unable to be moved.
impl<T> Box<[T]>[src]
#[must_use]pub fn new_uninit_slice(len: usize) -> Box<[MaybeUninit<T>]>ⓘ[src]
Construct a new boxed slice with uninitialized contents.
Example
use alloc_wg::boxed::Box; let mut values = Box::<[u32]>::new_uninit_slice(3); let values = unsafe { // Deferred initialization: values[0].as_mut_ptr().write(1); values[1].as_mut_ptr().write(2); values[2].as_mut_ptr().write(3); values.assume_init() }; assert_eq!(*values, [1, 2, 3]);
impl<T, A: AllocRef> Box<[T], A>[src]
pub fn new_uninit_slice_in(len: usize, a: A) -> Box<[MaybeUninit<T>], A>ⓘ[src]
Construct a new boxed slice with uninitialized contents with the spoecified allocator.
Example
#![feature(allocator_api)] use alloc_wg::{alloc::Global, boxed::Box}; let mut values = Box::<[u32], _>::new_uninit_slice_in(3, Global); let values = unsafe { // Deferred initialization: values[0].as_mut_ptr().write(1); values[1].as_mut_ptr().write(2); values[2].as_mut_ptr().write(3); values.assume_init() }; assert_eq!(*values, [1, 2, 3]);
pub fn try_new_uninit_slice_in(
len: usize,
a: A
) -> Result<Box<[MaybeUninit<T>], A>, TryReserveError>[src]
len: usize,
a: A
) -> Result<Box<[MaybeUninit<T>], A>, TryReserveError>
Tries to construct a new boxed slice with uninitialized contents with the spoecified allocator.
Example
#![feature(allocator_api)] use alloc_wg::{alloc::Global, boxed::Box}; let mut values = Box::<[u32], Global>::try_new_uninit_slice_in(3, Global)?; let values = unsafe { // Deferred initialization: values[0].as_mut_ptr().write(1); values[1].as_mut_ptr().write(2); values[2].as_mut_ptr().write(3); values.assume_init() }; assert_eq!(*values, [1, 2, 3]);
impl<T, A: AllocRef> Box<MaybeUninit<T>, A>[src]
pub unsafe fn assume_init(self) -> Box<T, A>ⓘ[src]
Converts to Box<T, A>.
Safety
As with MaybeUninit::assume_init,
it is up to the caller to guarantee that the value
really is in an initialized state.
Calling this when the content is not yet fully initialized
causes immediate undefined behavior.
Example
use alloc_wg::boxed::Box; let mut five = Box::<u32>::new_uninit(); let five = unsafe { // Deferred initialization: five.as_mut_ptr().write(5); five.assume_init() }; assert_eq!(*five, 5)
impl<T, A: AllocRef> Box<[MaybeUninit<T>], A>[src]
pub unsafe fn assume_init(self) -> Box<[T], A>ⓘ[src]
Converts to Box<[T], B>.
Safety
As with MaybeUninit::assume_init,
it is up to the caller to guarantee that the values
really are in an initialized state.
Calling this when the content is not yet fully initialized
causes immediate undefined behavior.
Example
use alloc_wg::boxed::Box; let mut values = Box::<[u32]>::new_uninit_slice(3); let values = unsafe { // Deferred initialization: values[0].as_mut_ptr().write(1); values[1].as_mut_ptr().write(2); values[2].as_mut_ptr().write(3); values.assume_init() }; assert_eq!(*values, [1, 2, 3])
impl<T: ?Sized> Box<T>[src]
pub unsafe fn from_raw(raw: *mut T) -> Self[src]
Constructs a box from a raw pointer.
After calling this function, the raw pointer is owned by the resulting Box.2 Specifically,
the Box destructor will call the destructor of T and free the allocated memory. For
this to be safe, the memory must have been allocated in accordance
with the memory layout used by Box .
Safety
This function is unsafe because improper use may lead to memory problems. For example, a double-free may occur if the function is called twice on the same raw pointer.
Examples
Recreate a Box which was previously converted to a raw pointer using Box::into_raw:
use alloc_wg::boxed::Box; let x = Box::new(5); let ptr = Box::into_raw(x); let x = unsafe { Box::from_raw(ptr) };
Manually create a Box from scratch by using the global allocator:
use alloc_wg::{alloc::alloc, boxed::Box}; use core::alloc::Layout; unsafe { let ptr = alloc(Layout::new::<i32>()) as *mut i32; *ptr = 5; let x = Box::from_raw(ptr); }
impl<T: ?Sized, A: AllocRef> Box<T, A>[src]
pub unsafe fn from_raw_in(raw: *mut T, alloc: A) -> Self[src]
Constructs a box from a raw pointer.
After calling this function, the raw pointer is owned by the resulting Box. Specifically,
the Box destructor will call the destructor of T and free the allocated memory. For
this to be safe, the memory must have been allocated in accordance
with the [memory layout] used by Box .
Safety
This function is unsafe because improper use may lead to memory problems. For example, a double-free may occur if the function is called twice on the same raw pointer.
Example
Manually create a Box from scratch by using the global allocator:
#![feature(allocator_api)] use alloc_wg::{ alloc::{alloc, Global}, boxed::Box, }; use core::alloc::Layout; unsafe { let ptr = alloc(Layout::new::<i32>()) as *mut i32; *ptr = 5; let x: Box<_, Global> = Box::from_raw_in(ptr, Global); }
pub fn build_alloc(&self) -> &A[src]
Returns a shared reference to the associated BuildAlloc
pub fn build_alloc_mut(&mut self) -> &mut A[src]
Returns a mutable reference to the associated BuildAlloc
pub fn alloc_ref(&self) -> &A[src]
Returns a shared reference to the allocator.
pub fn alloc_ref_mut(&mut self) -> &mut A[src]
Returns a mutable reference to the allocator.
pub fn into_raw(b: Self) -> *mut T[src]
Consumes the Box, returning a wrapped raw pointer.
The pointer will be properly aligned and non-null.
After calling this function, the caller is responsible for the memory previously managed by
the Box. In particular, the caller should properly destroy T and release the memory,
taking into account the memory layout used by Box. The easiest way to do this is to
convert the raw pointer back into a Box with the Box::from_raw function,
allowing the Box destructor to perform the cleanup.
Note: this is an associated function, which means that you have to call it as
Box::into_raw(b) instead of b.into_raw(). This is so that there is no conflict with
a method on the inner type.
Examples
Converting the raw pointer back into a Box with Box::from_raw for automatic cleanup:
use alloc_wg::boxed::Box; let x = Box::new(String::from("Hello")); let ptr = Box::into_raw(x); let x = unsafe { Box::from_raw(ptr) };
Manual cleanup by explicitly running the destructor and deallocating the memory:
use alloc_wg::{alloc::dealloc, boxed::Box}; use core::{alloc::Layout, ptr}; let x = Box::new(String::from("Hello")); let p = Box::into_raw(x); unsafe { ptr::drop_in_place(p); dealloc(p as *mut u8, Layout::new::<String>()); }
pub fn into_raw_alloc(b: Self) -> (*mut T, A)[src]
pub fn into_raw_non_null(b: Self) -> NonNull<T>[src]
Consumes the Box, returning the wrapped pointer as NonNull<T>.
After calling this function, the caller is responsible for the memory previously managed by
the Box. In particular, the caller should properly destroy T and release the memory.
The easiest way to do so is to convert the NonNull<T> pointer
into a raw pointer and back into a Box with the Box::from_raw
function.
Note: this is an associated function, which means that you have to call it as
Box::into_raw_non_null(b) instead of b.into_raw_non_null(). This is so that there is no
conflict with a method on the inner type.
Examples
use alloc_wg::boxed::Box; let x = Box::new(5); let ptr = Box::into_raw_non_null(x); // Clean up the memory by converting the NonNull pointer back // into a Box and letting the Box be dropped. let x = unsafe { Box::from_raw(ptr.as_ptr()) };
pub fn into_raw_non_null_alloc(b: Self) -> (NonNull<T>, A)[src]
pub fn leak<'a>(b: Self) -> &'a mut T where
T: 'a, [src]
T: 'a,
Consumes and leaks the Box, returning a mutable reference,
&'a mut T. Note that the type T must outlive the chosen lifetime
'a. If the type has only static references, or none at all, then this
may be chosen to be 'static.
This function is mainly useful for data that lives for the remainder of
the program's life. Dropping the returned reference will cause a memory
leak. If this is not acceptable, the reference should first be wrapped
with the Box::from_raw function producing a Box. This Box can
then be dropped which will properly destroy T and release the
allocated memory.
Note: this is an associated function, which means that you have
to call it as Box::leak(b) instead of b.leak(). This
is so that there is no conflict with a method on the inner type.
Examples
Simple usage:
use alloc_wg::boxed::Box; let x = Box::new(41); let static_ref: &'static mut usize = Box::leak(x); *static_ref += 1; assert_eq!(*static_ref, 42);
pub fn into_pin(boxed: Self) -> Pin<Self>[src]
Converts a Box<T, A> into a Pin<Box<T, A>>
This conversion does not allocate and happens in place.
This is also available via From.
impl<A: AllocRef> Box<dyn Any, A>[src]
pub fn downcast<T: Any>(self) -> Result<Box<T, A>, Box<dyn Any, A>>[src]
Attempt to downcast the box to a concrete type.
Examples
use std::any::Any; fn print_if_string(value: Box<dyn Any>) { if let Ok(string) = value.downcast::<String>() { println!("String ({}): {}", string.len(), string); } } let my_string = "Hello World".to_string(); print_if_string(Box::new(my_string)); print_if_string(Box::new(0i8));
impl<A: AllocRef> Box<dyn Any + Send, A>[src]
pub fn downcast<T: Any>(self) -> Result<Box<T, A>, Box<dyn Any + Send, A>>[src]
Attempt to downcast the box to a concrete type.
Examples
use std::any::Any; fn print_if_string(value: Box<dyn Any + Send>) { if let Ok(string) = value.downcast::<String>() { println!("String ({}): {}", string.len(), string); } } let my_string = "Hello World".to_string(); print_if_string(Box::new(my_string)); print_if_string(Box::new(0i8));
Trait Implementations
impl<T: ?Sized, A: AllocRef> AsMut<T> for Box<T, A>[src]
impl<T: ?Sized, A: AllocRef> AsRef<T> for Box<T, A>[src]
impl<T: ?Sized, A: AllocRef> Borrow<T> for Box<T, A>[src]
impl<T: ?Sized, A: AllocRef> BorrowMut<T> for Box<T, A>[src]
fn borrow_mut(&mut self) -> &mut T[src]
impl<T: Clone, A: AllocRef + Clone> Clone for Box<T, A>[src]
fn clone(&self) -> Self[src]
Returns a new box with a clone() of this box's contents.
Examples
use alloc_wg::boxed::Box; let x = Box::new(5); let y = x.clone(); // The value is the same assert_eq!(x, y); // But they are unique objects assert_ne!(&*x as *const i32, &*y as *const i32);
fn clone_from(&mut self, source: &Self)[src]
Copies source's contents into self without creating a new allocation.
Examples
use alloc_wg::boxed::Box; let x = Box::new(5); let mut y = Box::new(10); let yp: *const i32 = &*y; y.clone_from(&x); // The value is the same assert_eq!(x, y); // And no allocation occurred assert_eq!(yp, &*y);
impl<T: Clone, A: Clone> Clone for Box<[T], A> where
A: AllocRef, [src]
A: AllocRef,
fn clone(&self) -> Self[src]
fn clone_from(&mut self, source: &Self)1.0.0[src]
impl<T: Clone, A: AllocRef, B: AllocRef> CloneIn<B> for Box<T, A>[src]
type Cloned = Box<T, B>
fn clone_in(&self, a: B) -> Self::Cloned[src]
fn try_clone_in(&self, a: B) -> Result<Self::Cloned, TryReserveError>[src]
impl<T: ?Sized + Unsize<U>, U: ?Sized, A: AllocRef> CoerceUnsized<Box<U, A>> for Box<T, A>[src]
impl<T: Debug + ?Sized, A: AllocRef> Debug for Box<T, A>[src]
impl<T, A> Default for Box<T, A> where
T: Default,
A: Default + AllocRef, [src]
T: Default,
A: Default + AllocRef,
impl<T, A: AllocRef> Default for Box<[T], A> where
A: Default, [src]
A: Default,
impl<A> Default for Box<str, A> where
A: Default + AllocRef, [src]
A: Default + AllocRef,
impl<T: ?Sized, A: AllocRef> Deref for Box<T, A>[src]
impl<T: ?Sized, A: AllocRef> DerefMut for Box<T, A>[src]
impl<T: ?Sized + Unsize<U>, U: ?Sized> DispatchFromDyn<Box<U, Global>> for Box<T, Global>[src]
impl<T: ?Sized + Unsize<U>, U: ?Sized> DispatchFromDyn<Box<U, System>> for Box<T, System>[src]
impl<T: Display + ?Sized, A: AllocRef> Display for Box<T, A>[src]
impl<I: DoubleEndedIterator + ?Sized, A: AllocRef> DoubleEndedIterator for Box<I, A>[src]
fn next_back(&mut self) -> Option<I::Item>[src]
fn nth_back(&mut self, n: usize) -> Option<I::Item>[src]
fn try_rfold<B, F, R>(&mut self, init: B, f: F) -> R where
F: FnMut(B, Self::Item) -> R,
R: Try<Ok = B>, 1.27.0[src]
F: FnMut(B, Self::Item) -> R,
R: Try<Ok = B>,
fn rfold<B, F>(self, init: B, f: F) -> B where
F: FnMut(B, Self::Item) -> B, 1.27.0[src]
F: FnMut(B, Self::Item) -> B,
fn rfind<P>(&mut self, predicate: P) -> Option<Self::Item> where
P: FnMut(&Self::Item) -> bool, 1.27.0[src]
P: FnMut(&Self::Item) -> bool,
impl<T: ?Sized, A: AllocRef> Drop for Box<T, A>[src]
impl<T: ?Sized + Eq, A: AllocRef> Eq for Box<T, A>[src]
impl<I: ExactSizeIterator + ?Sized, A: AllocRef> ExactSizeIterator for Box<I, A>[src]
impl<Args, F: Fn<Args> + Copy + ?Sized, A: AllocRef> Fn<Args> for Box<F, A>[src]
impl<Args, F: FnMut<Args> + Copy + ?Sized, A: AllocRef> FnMut<Args> for Box<F, A>[src]
impl<Args, F: FnOnce<Args> + Copy + ?Sized, A: AllocRef> FnOnce<Args> for Box<F, A>[src]
type Output = <F as FnOnce<Args>>::Output
The returned type after the call operator is used.
extern "rust-call" fn call_once(self, args: Args) -> Self::Output[src]
impl<T: Copy, A: AllocRef, '_> From<&'_ [T]> for Box<[T], A> where
A: Default, [src]
A: Default,
fn from(slice: &[T]) -> Self[src]
Converts a &[T] into a Box<[T], B>
This conversion allocates and performs a copy of slice.
Examples
use alloc_wg::boxed::Box; // create a &[u8] which will be used to create a Box<[u8]> let slice: &[u8] = &[104, 101, 108, 108, 111]; let boxed_slice: Box<[u8]> = Box::from(slice); println!("{:?}", boxed_slice);
impl<A: AllocRef, '_> From<&'_ str> for Box<str, A> where
A: Default, [src]
A: Default,
#[must_use]fn from(s: &str) -> Self[src]
Converts a &str into a Box<str>
This conversion allocates on the heap
and performs a copy of s.
Examples
use alloc_wg::boxed::Box; let boxed: Box<str> = Box::from("hello"); println!("{}", boxed);
impl<T: ?Sized, A: AllocRef> From<Box<T, A>> for Pin<Box<T, A>>[src]
fn from(boxed: Box<T, A>) -> Self[src]
Converts a Box<T, A> into a Pin<Box<T, A>>
This conversion does not allocate on the heap and happens in place.
impl<A: AllocRef> From<Box<str, A>> for Box<[u8], A>[src]
fn from(s: Box<str, A>) -> Self[src]
Converts a Box<str>> into a Box<[u8]>
This conversion does not allocate on the heap and happens in place.
Examples
// create a Box<str> which will be used to create a Box<[u8]> let boxed: Box<str> = Box::from("hello"); let boxed_str: Box<[u8]> = Box::from(boxed); // create a &[u8] which will be used to create a Box<[u8]> let slice: &[u8] = &[104, 101, 108, 108, 111]; let boxed_slice = Box::from(slice); assert_eq!(boxed_slice, boxed_str);
impl From<Box<str, Global>> for String[src]
#[must_use]fn from(s: Box<str>) -> Self[src]
Converts the given boxed str slice to a String.
It is notable that the str slice is owned.
Examples
Basic usage:
let s1: String = String::from("hello world"); let s2 = s1.into_boxed_str(); let s3: String = String::from(s2); assert_eq!("hello world", s3)
impl<A> From<String<A>> for Box<str, A> where
A: AllocRef, [src]
A: AllocRef,
fn from(s: String<A>) -> Self[src]
Converts the given String to a boxed str slice that is owned.
Examples
Basic usage:
let s1: String = String::from("hello world"); let s2: Box<str> = Box::from(s1); let s3: String = String::from(s2); assert_eq!("hello world", s3)
impl<T, A> From<T> for Box<T, A> where
A: Default + AllocRef, [src]
A: Default + AllocRef,
fn from(t: T) -> Self[src]
Converts a generic type T into a Box<T>
The conversion allocates on the heap and moves t
from the stack into it.
Examples
use alloc_wg::boxed::Box; let x = 5; let boxed = Box::new(5); assert_eq!(Box::from(x), boxed);
impl<T> From<Vec<T, Global>> for Box<[T]>[src]
impl<I: FusedIterator + ?Sized, A: AllocRef> FusedIterator for Box<I, A>[src]
impl<F: ?Sized + Future + Unpin, A: AllocRef> Future for Box<F, A>[src]
type Output = F::Output
The type of value produced on completion.
fn poll(self: Pin<&mut Self>, cx: &mut Context<'_>) -> Poll<Self::Output>[src]
impl<T: ?Sized + Hash, A: AllocRef> Hash for Box<T, A>[src]
fn hash<H: Hasher>(&self, state: &mut H)[src]
fn hash_slice<H>(data: &[Self], state: &mut H) where
H: Hasher, 1.3.0[src]
H: Hasher,
impl<T: ?Sized + Hasher, A: AllocRef> Hasher for Box<T, A>[src]
fn finish(&self) -> u64[src]
fn write(&mut self, bytes: &[u8])[src]
fn write_u8(&mut self, i: u8)[src]
fn write_u16(&mut self, i: u16)[src]
fn write_u32(&mut self, i: u32)[src]
fn write_u64(&mut self, i: u64)[src]
fn write_u128(&mut self, i: u128)[src]
fn write_usize(&mut self, i: usize)[src]
fn write_i8(&mut self, i: i8)[src]
fn write_i16(&mut self, i: i16)[src]
fn write_i32(&mut self, i: i32)[src]
fn write_i64(&mut self, i: i64)[src]
fn write_i128(&mut self, i: i128)[src]
fn write_isize(&mut self, i: isize)[src]
impl<I: Iterator + ?Sized, A: AllocRef> Iterator for Box<I, A>[src]
type Item = I::Item
The type of the elements being iterated over.
fn next(&mut self) -> Option<I::Item>[src]
fn size_hint(&self) -> (usize, Option<usize>)[src]
fn last(self) -> Option<I::Item>[src]
fn nth(&mut self, n: usize) -> Option<I::Item>[src]
fn count(self) -> usize1.0.0[src]
fn step_by(self, step: usize) -> StepBy<Self>1.28.0[src]
fn chain<U>(self, other: U) -> Chain<Self, <U as IntoIterator>::IntoIter> where
U: IntoIterator<Item = Self::Item>, 1.0.0[src]
U: IntoIterator<Item = Self::Item>,
fn zip<U>(self, other: U) -> Zip<Self, <U as IntoIterator>::IntoIter> where
U: IntoIterator, 1.0.0[src]
U: IntoIterator,
fn map<B, F>(self, f: F) -> Map<Self, F> where
F: FnMut(Self::Item) -> B, 1.0.0[src]
F: FnMut(Self::Item) -> B,
fn for_each<F>(self, f: F) where
F: FnMut(Self::Item), 1.21.0[src]
F: FnMut(Self::Item),
fn filter<P>(self, predicate: P) -> Filter<Self, P> where
P: FnMut(&Self::Item) -> bool, 1.0.0[src]
P: FnMut(&Self::Item) -> bool,
fn filter_map<B, F>(self, f: F) -> FilterMap<Self, F> where
F: FnMut(Self::Item) -> Option<B>, 1.0.0[src]
F: FnMut(Self::Item) -> Option<B>,
fn enumerate(self) -> Enumerate<Self>1.0.0[src]
fn peekable(self) -> Peekable<Self>1.0.0[src]
fn skip_while<P>(self, predicate: P) -> SkipWhile<Self, P> where
P: FnMut(&Self::Item) -> bool, 1.0.0[src]
P: FnMut(&Self::Item) -> bool,
fn take_while<P>(self, predicate: P) -> TakeWhile<Self, P> where
P: FnMut(&Self::Item) -> bool, 1.0.0[src]
P: FnMut(&Self::Item) -> bool,
fn map_while<B, P>(self, predicate: P) -> MapWhile<Self, P> where
P: FnMut(Self::Item) -> Option<B>, [src]
P: FnMut(Self::Item) -> Option<B>,
fn skip(self, n: usize) -> Skip<Self>1.0.0[src]
fn take(self, n: usize) -> Take<Self>1.0.0[src]
fn scan<St, B, F>(self, initial_state: St, f: F) -> Scan<Self, St, F> where
F: FnMut(&mut St, Self::Item) -> Option<B>, 1.0.0[src]
F: FnMut(&mut St, Self::Item) -> Option<B>,
fn flat_map<U, F>(self, f: F) -> FlatMap<Self, U, F> where
F: FnMut(Self::Item) -> U,
U: IntoIterator, 1.0.0[src]
F: FnMut(Self::Item) -> U,
U: IntoIterator,
fn flatten(self) -> Flatten<Self> where
Self::Item: IntoIterator, 1.29.0[src]
Self::Item: IntoIterator,
fn fuse(self) -> Fuse<Self>1.0.0[src]
fn inspect<F>(self, f: F) -> Inspect<Self, F> where
F: FnMut(&Self::Item), 1.0.0[src]
F: FnMut(&Self::Item),
fn by_ref(&mut self) -> &mut Self1.0.0[src]
#[must_use =
"if you really need to exhaust the iterator, consider `.for_each(drop)` instead"]fn collect<B>(self) -> B where
B: FromIterator<Self::Item>, 1.0.0[src]
B: FromIterator<Self::Item>,
fn partition<B, F>(self, f: F) -> (B, B) where
B: Default + Extend<Self::Item>,
F: FnMut(&Self::Item) -> bool, 1.0.0[src]
B: Default + Extend<Self::Item>,
F: FnMut(&Self::Item) -> bool,
fn partition_in_place<'a, T, P>(self, predicate: P) -> usize where
P: FnMut(&T) -> bool,
Self: DoubleEndedIterator<Item = &'a mut T>,
T: 'a, [src]
P: FnMut(&T) -> bool,
Self: DoubleEndedIterator<Item = &'a mut T>,
T: 'a,
fn is_partitioned<P>(self, predicate: P) -> bool where
P: FnMut(Self::Item) -> bool, [src]
P: FnMut(Self::Item) -> bool,
fn try_fold<B, F, R>(&mut self, init: B, f: F) -> R where
F: FnMut(B, Self::Item) -> R,
R: Try<Ok = B>, 1.27.0[src]
F: FnMut(B, Self::Item) -> R,
R: Try<Ok = B>,
fn try_for_each<F, R>(&mut self, f: F) -> R where
F: FnMut(Self::Item) -> R,
R: Try<Ok = ()>, 1.27.0[src]
F: FnMut(Self::Item) -> R,
R: Try<Ok = ()>,
fn fold<B, F>(self, init: B, f: F) -> B where
F: FnMut(B, Self::Item) -> B, 1.0.0[src]
F: FnMut(B, Self::Item) -> B,
fn fold_first<F>(self, f: F) -> Option<Self::Item> where
F: FnMut(Self::Item, Self::Item) -> Self::Item, [src]
F: FnMut(Self::Item, Self::Item) -> Self::Item,
fn all<F>(&mut self, f: F) -> bool where
F: FnMut(Self::Item) -> bool, 1.0.0[src]
F: FnMut(Self::Item) -> bool,
fn any<F>(&mut self, f: F) -> bool where
F: FnMut(Self::Item) -> bool, 1.0.0[src]
F: FnMut(Self::Item) -> bool,
fn find<P>(&mut self, predicate: P) -> Option<Self::Item> where
P: FnMut(&Self::Item) -> bool, 1.0.0[src]
P: FnMut(&Self::Item) -> bool,
fn find_map<B, F>(&mut self, f: F) -> Option<B> where
F: FnMut(Self::Item) -> Option<B>, 1.30.0[src]
F: FnMut(Self::Item) -> Option<B>,
fn try_find<F, R>(
&mut self,
f: F
) -> Result<Option<Self::Item>, <R as Try>::Error> where
F: FnMut(&Self::Item) -> R,
R: Try<Ok = bool>, [src]
&mut self,
f: F
) -> Result<Option<Self::Item>, <R as Try>::Error> where
F: FnMut(&Self::Item) -> R,
R: Try<Ok = bool>,
fn position<P>(&mut self, predicate: P) -> Option<usize> where
P: FnMut(Self::Item) -> bool, 1.0.0[src]
P: FnMut(Self::Item) -> bool,
fn rposition<P>(&mut self, predicate: P) -> Option<usize> where
P: FnMut(Self::Item) -> bool,
Self: ExactSizeIterator + DoubleEndedIterator, 1.0.0[src]
P: FnMut(Self::Item) -> bool,
Self: ExactSizeIterator + DoubleEndedIterator,
fn max(self) -> Option<Self::Item> where
Self::Item: Ord, 1.0.0[src]
Self::Item: Ord,
fn min(self) -> Option<Self::Item> where
Self::Item: Ord, 1.0.0[src]
Self::Item: Ord,
fn max_by_key<B, F>(self, f: F) -> Option<Self::Item> where
B: Ord,
F: FnMut(&Self::Item) -> B, 1.6.0[src]
B: Ord,
F: FnMut(&Self::Item) -> B,
fn max_by<F>(self, compare: F) -> Option<Self::Item> where
F: FnMut(&Self::Item, &Self::Item) -> Ordering, 1.15.0[src]
F: FnMut(&Self::Item, &Self::Item) -> Ordering,
fn min_by_key<B, F>(self, f: F) -> Option<Self::Item> where
B: Ord,
F: FnMut(&Self::Item) -> B, 1.6.0[src]
B: Ord,
F: FnMut(&Self::Item) -> B,
fn min_by<F>(self, compare: F) -> Option<Self::Item> where
F: FnMut(&Self::Item, &Self::Item) -> Ordering, 1.15.0[src]
F: FnMut(&Self::Item, &Self::Item) -> Ordering,
fn rev(self) -> Rev<Self> where
Self: DoubleEndedIterator, 1.0.0[src]
Self: DoubleEndedIterator,
fn unzip<A, B, FromA, FromB>(self) -> (FromA, FromB) where
FromA: Default + Extend<A>,
FromB: Default + Extend<B>,
Self: Iterator<Item = (A, B)>, 1.0.0[src]
FromA: Default + Extend<A>,
FromB: Default + Extend<B>,
Self: Iterator<Item = (A, B)>,
fn copied<'a, T>(self) -> Copied<Self> where
Self: Iterator<Item = &'a T>,
T: 'a + Copy, 1.36.0[src]
Self: Iterator<Item = &'a T>,
T: 'a + Copy,
fn cloned<'a, T>(self) -> Cloned<Self> where
Self: Iterator<Item = &'a T>,
T: 'a + Clone, 1.0.0[src]
Self: Iterator<Item = &'a T>,
T: 'a + Clone,
fn cycle(self) -> Cycle<Self> where
Self: Clone, 1.0.0[src]
Self: Clone,
fn sum<S>(self) -> S where
S: Sum<Self::Item>, 1.11.0[src]
S: Sum<Self::Item>,
fn product<P>(self) -> P where
P: Product<Self::Item>, 1.11.0[src]
P: Product<Self::Item>,
fn cmp<I>(self, other: I) -> Ordering where
I: IntoIterator<Item = Self::Item>,
Self::Item: Ord, 1.5.0[src]
I: IntoIterator<Item = Self::Item>,
Self::Item: Ord,
fn cmp_by<I, F>(self, other: I, cmp: F) -> Ordering where
F: FnMut(Self::Item, <I as IntoIterator>::Item) -> Ordering,
I: IntoIterator, [src]
F: FnMut(Self::Item, <I as IntoIterator>::Item) -> Ordering,
I: IntoIterator,
fn partial_cmp<I>(self, other: I) -> Option<Ordering> where
I: IntoIterator,
Self::Item: PartialOrd<<I as IntoIterator>::Item>, 1.5.0[src]
I: IntoIterator,
Self::Item: PartialOrd<<I as IntoIterator>::Item>,
fn partial_cmp_by<I, F>(self, other: I, partial_cmp: F) -> Option<Ordering> where
F: FnMut(Self::Item, <I as IntoIterator>::Item) -> Option<Ordering>,
I: IntoIterator, [src]
F: FnMut(Self::Item, <I as IntoIterator>::Item) -> Option<Ordering>,
I: IntoIterator,
fn eq<I>(self, other: I) -> bool where
I: IntoIterator,
Self::Item: PartialEq<<I as IntoIterator>::Item>, 1.5.0[src]
I: IntoIterator,
Self::Item: PartialEq<<I as IntoIterator>::Item>,
fn eq_by<I, F>(self, other: I, eq: F) -> bool where
F: FnMut(Self::Item, <I as IntoIterator>::Item) -> bool,
I: IntoIterator, [src]
F: FnMut(Self::Item, <I as IntoIterator>::Item) -> bool,
I: IntoIterator,
fn ne<I>(self, other: I) -> bool where
I: IntoIterator,
Self::Item: PartialEq<<I as IntoIterator>::Item>, 1.5.0[src]
I: IntoIterator,
Self::Item: PartialEq<<I as IntoIterator>::Item>,
fn lt<I>(self, other: I) -> bool where
I: IntoIterator,
Self::Item: PartialOrd<<I as IntoIterator>::Item>, 1.5.0[src]
I: IntoIterator,
Self::Item: PartialOrd<<I as IntoIterator>::Item>,
fn le<I>(self, other: I) -> bool where
I: IntoIterator,
Self::Item: PartialOrd<<I as IntoIterator>::Item>, 1.5.0[src]
I: IntoIterator,
Self::Item: PartialOrd<<I as IntoIterator>::Item>,
fn gt<I>(self, other: I) -> bool where
I: IntoIterator,
Self::Item: PartialOrd<<I as IntoIterator>::Item>, 1.5.0[src]
I: IntoIterator,
Self::Item: PartialOrd<<I as IntoIterator>::Item>,
fn ge<I>(self, other: I) -> bool where
I: IntoIterator,
Self::Item: PartialOrd<<I as IntoIterator>::Item>, 1.5.0[src]
I: IntoIterator,
Self::Item: PartialOrd<<I as IntoIterator>::Item>,
fn is_sorted(self) -> bool where
Self::Item: PartialOrd<Self::Item>, [src]
Self::Item: PartialOrd<Self::Item>,
fn is_sorted_by<F>(self, compare: F) -> bool where
F: FnMut(&Self::Item, &Self::Item) -> Option<Ordering>, [src]
F: FnMut(&Self::Item, &Self::Item) -> Option<Ordering>,
fn is_sorted_by_key<F, K>(self, f: F) -> bool where
F: FnMut(Self::Item) -> K,
K: PartialOrd<K>, [src]
F: FnMut(Self::Item) -> K,
K: PartialOrd<K>,
impl<T: ?Sized + Ord, A: AllocRef> Ord for Box<T, A>[src]
fn cmp(&self, other: &Self) -> Ordering[src]
#[must_use]fn max(self, other: Self) -> Self1.21.0[src]
#[must_use]fn min(self, other: Self) -> Self1.21.0[src]
#[must_use]fn clamp(self, min: Self, max: Self) -> Self[src]
impl<T: ?Sized + PartialEq, A: AllocRef> PartialEq<Box<T, A>> for Box<T, A>[src]
impl<T: ?Sized + PartialOrd, A: AllocRef> PartialOrd<Box<T, A>> for Box<T, A>[src]
fn partial_cmp(&self, other: &Self) -> Option<Ordering>[src]
fn lt(&self, other: &Self) -> bool[src]
fn le(&self, other: &Self) -> bool[src]
fn gt(&self, other: &Self) -> bool[src]
fn ge(&self, other: &Self) -> bool[src]
impl<T: ?Sized, A: AllocRef> Pointer for Box<T, A>[src]
impl<T: ?Sized, A: AllocRef> Receiver for Box<T, A>[src]
impl<T, const N: usize> TryFrom<Box<[T], Global>> for Box<[T; N]>[src]
type Error = Box<[T]>
The type returned in the event of a conversion error.
fn try_from(boxed_slice: Box<[T]>) -> Result<Self, Self::Error>[src]
impl<T: ?Sized, A: AllocRef> Unpin for Box<T, A>[src]
Auto Trait Implementations
impl<T: ?Sized, A> RefUnwindSafe for Box<T, A> where
A: RefUnwindSafe,
T: RefUnwindSafe,
A: RefUnwindSafe,
T: RefUnwindSafe,
impl<T: ?Sized, A> Send for Box<T, A> where
A: Send,
T: Send,
A: Send,
T: Send,
impl<T: ?Sized, A> Sync for Box<T, A> where
A: Sync,
T: Sync,
A: Sync,
T: Sync,
impl<T: ?Sized, A> UnwindSafe for Box<T, A> where
A: UnwindSafe,
T: RefUnwindSafe + UnwindSafe,
A: UnwindSafe,
T: RefUnwindSafe + UnwindSafe,
Blanket Implementations
impl<T> Any for T where
T: 'static + ?Sized, [src]
T: 'static + ?Sized,
impl<T> Borrow<T> for T where
T: ?Sized, [src]
T: ?Sized,
impl<T> BorrowMut<T> for T where
T: ?Sized, [src]
T: ?Sized,
fn borrow_mut(&mut self) -> &mut T[src]
impl<T> From<!> for T[src]
impl<T> From<T> for T[src]
impl<T, U> Into<U> for T where
U: From<T>, [src]
U: From<T>,
impl<F> IntoFuture for F where
F: Future, [src]
F: Future,
type Output = <F as Future>::Output
into_future)The output that the future will produce on completion.
type Future = F
into_future)Which kind of future are we turning this into?
fn into_future(self) -> <F as IntoFuture>::Future[src]
impl<I> IntoIterator for I where
I: Iterator, [src]
I: Iterator,
type Item = <I as Iterator>::Item
The type of the elements being iterated over.
type IntoIter = I
Which kind of iterator are we turning this into?
fn into_iter(self) -> I[src]
impl<T> IteratorExt for T where
T: Iterator, [src]
T: Iterator,
#[must_use =
"if you really need to exhaust the iterator, consider `.for_each(drop)` instead"]fn collect_in<T: FromIteratorIn<Self::Item, A>, A: AllocRef>(
self,
allocator: A
) -> T[src]
self,
allocator: A
) -> T
#[must_use =
"if you really need to exhaust the iterator, consider `.for_each(drop)` instead"]fn try_collect_in<T: FromIteratorIn<Self::Item, A>, A: AllocRef>(
self,
allocator: A
) -> Result<T, TryReserveError>[src]
self,
allocator: A
) -> Result<T, TryReserveError>
impl<'a, F> Pattern<'a> for F where
F: FnMut(char) -> bool, [src]
F: FnMut(char) -> bool,
type Searcher = CharPredicateSearcher<'a, F>
🔬 This is a nightly-only experimental API. (pattern)
API not fully fleshed out and ready to be stabilized
Associated searcher for this pattern
fn into_searcher(self, haystack: &'a str) -> CharPredicateSearcher<'a, F>[src]
fn is_contained_in(self, haystack: &'a str) -> bool[src]
fn is_prefix_of(self, haystack: &'a str) -> bool[src]
fn strip_prefix_of(self, haystack: &'a str) -> Option<&'a str>[src]
fn is_suffix_of(self, haystack: &'a str) -> bool where
CharPredicateSearcher<'a, F>: ReverseSearcher<'a>, [src]
CharPredicateSearcher<'a, F>: ReverseSearcher<'a>,
fn strip_suffix_of(self, haystack: &'a str) -> Option<&'a str> where
CharPredicateSearcher<'a, F>: ReverseSearcher<'a>, [src]
CharPredicateSearcher<'a, F>: ReverseSearcher<'a>,
impl<T> ToOwned for T where
T: Clone, [src]
T: Clone,
type Owned = T
The resulting type after obtaining ownership.
fn to_owned(&self) -> T[src]
fn clone_into(&self, target: &mut T)[src]
impl<T> ToString for T where
T: Display + ?Sized, [src]
T: Display + ?Sized,
impl<T, U> TryFrom<U> for T where
U: Into<T>, [src]
U: Into<T>,
type Error = Infallible
The type returned in the event of a conversion error.
fn try_from(value: U) -> Result<T, <T as TryFrom<U>>::Error>[src]
impl<T, U> TryInto<U> for T where
U: TryFrom<T>, [src]
U: TryFrom<T>,